Part Number Hot Search : 
AO7410 TPS229 PT22423 1002T PEF2054 HGDEPT02 FA20055 681000
Product Description
Full Text Search
 

To Download UPD750104CU Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DATA SHEET
MOS INTEGRATED CIRCUIT
PD750104,750106,750108,750104(A),750106(A),750108(A)
4 BIT SINGLE-CHIP MICROCONTROLLER
The PD750108 is one of the 75XL series 4-bit single-chip microcontrollers, which provide data processing capability equal to that of an 8-bit microcontroller. The PD750108 is produced by replacing the main system clock oscillator of the PD750008 with an RC oscillator, enabling operation at a relatively low voltage of 1.8 V. In addition, it is best suited to applications using batteries. The PD750108(A) has a higher reliability than the PD750108. A built-in one-time PROM product, PD75P0116, is also available. It is suitable for small-scale production and evaluation of application systems. The following user's manual describes the details of the functions of the PD750108. Be sure to read it before designing application systems.
PD750108 User's Manual: U11330E
FEATURES
* Built-in RC oscillator * Enables the immediate start of processing after the release of standby mode * Capable of low-voltage operation: VDD = 1.8 to 5.5 V * Internal memory Program memory (ROM) : 4,096 x 8 bits (PD750104 and PD750104(A)) : 6,144 x 8 bits (PD750106 and PD750106(A)) : 8,192 x 8 bits (PD750108 and PD750108(A)) Data memory (RAM) : 512 x 4 bits * Function for specifying the instruction execution time (useful for saving power) 4 s, 8 s, 16 s, 64 s (when operating at 1.0 MHz) 2 s, 4 s, 8 s, 32 s (when operating at 2.0 MHz) 122 s (when operating at 32.768 kHz) * Enhanced timer function (4 channels) * Can be easily substituted for the PD750008 because this product succeeds to the functions and instructions of the PD750008.
APPLICATIONS
* PD750104, PD750106, and PD750108 Cameras, meters, and pagers * PD750104(A), PD750106(A), and PD750108(A) Electrical equipment for automobiles The PD750104, PD750106, PD750108, PD750104(A), PD750106(A), and PD750108(A) differ only in quality grade. In this manual, the PD750108 is described unless otherwise specified. Users of other than the
PD750108 should read PD750108 as referring to the pertinent product.
When the description differs among PD750104, PD750106, and PD750108, they also refer to the pertinent (A) products.
PD750104 PD750104(A), PD750106 PD750106(A), PD750108 PD750108(A)
The information in this document is subject to change without notice. Document No. U12301EJ1V0DS00 (1st edition) Date Published July 1997 J Printed in Japan
(c)
1990 1997
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
ORDERING INFORMATION
Part number Package 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 x 10 mm, 0.8-mm-pitch) 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) Quality grade Standard Standard Standard Standard Standard Standard Special Special Special Special Special Special
PD750104CU-xxx PD750104GB-xxx-3BS-MTX PD750106CU-xxx PD750106GB-xxx-3BS-MTX PD750108CU-xxx PD750108GB-xxx-3BS-MTX PD750104CU(A)-xxx PD750104GB(A)-xxx-3BS-MTX PD750106CU(A)-xxx PD750106GB(A)-xxx-3BS-MTX PD750108CU(A)-xxx PD750108GB(A)-xxx-3BS-MTX
Remark xxx is a mask ROM code number.
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
DIFFERENCES BETWEEN PD75010x AND PD75010x(A)
Product number
PD750104 PD750106
PD750104(A) PD750106(A) PD750108(A)
Special
Item Quality grade
PD750108
Standard
2
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
FUNCTIONS
Item Command execution time Function * 4, 8, 16, or 64 s (when the main system clock operates at 1.0 MHz) * 2, 4, 8, or 32 s (when the main system clock operates at 2.0 MHz) * 122 s (when the subsystem clock operates at 32.768 kHz) 4,096 x 8 bits (PD750104) 6,144 x 8 bits (PD750106) 8,192 x 8 bits (PD750108) RAM General-purpose register I/O port CMOS input CMOS I/O 512 x 4 bits * When operating in 4 bits: 8 x 4 banks * When operating in 8 bits: 4 x 4 banks 8 18 Can incorporate 7 pull-up resistors that are specified with the software. Can directly drive the LED. Can incorporate 18 pull-up resistors that are specified with the software. Can directly drive the LED. Can withstand 13 V. Can incorporate pull-up resistors that are specified with the mask option.
Internal memory
ROM
N-ch open drain I/O
8
Total Timer
34 4 channels * 8-bit timer/event counter: 1 channel * 8-bit timer counter: 1 channel * Basic interval timer/watchdog timer: 1 channel * lock timer: 1 channel
Serial interface
* Three-wire serial I/O mode ... switchable between the start LSB and the start MSB * Two-wire serial I/O mode * SBI mode
16 bits
Bit sequential buffer (BSB) Clock output (PCL)
* , 125, 62.5, or 15.6 kHz (when the main system clock operates at 1.0 MHz) * , 250, 125, or 31.3 kHz (when the main system clock operates at 2.0 MHz) * 2, 4, or 32 kHz (when the subsystem clock operates at 32.768 kHz) * 0.488, 0.977, or 7.813 kHz (when the main system clock operates at 1.0 MHz) * 0.977, 1.953, or 15.625 kHz (when the main system clock operates at 2.0 MHz)
External : Internal : External : Internal : 3 4 1 1
Buzzer output (BUZ)
Vectored interrupt
Test input
System clock oscillator Standby Operating ambient temperature range Supply voltage Package
* *
RC oscillator for main system clock (with external resistor and capacitor) Crystal oscillator for subsystem clock
STOP/HALT mode TA = -40 to +85 C VDD = 1.8 to 5.5 V 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch)
3
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
CONTENTS
1. 2. 3.
PIN CONFIGURATION (TOP VIEW) ......................................................................................... BLOCK DIAGRAM ..................................................................................................................... PIN FUNCTIONS ........................................................................................................................
3.1 3.2 3.3 3.4 Port Pins ......................................................................................................................................... Non-Port Pins ................................................................................................................................. Pin Input/Output Circuits .............................................................................................................. Connection of Unused Pins .........................................................................................................
6 8 9
9 10 11 13
4.
Mk MODE/Mk MODE SWITCH FUNCTION ........................................................................
4.1 4.2 Differences between Mk Mode and Mk Mode ...................................................................... Setting of the Stack Bank Selection Register (SBS) ................................................................
14
14 15
5. 6.
MEMORY CONFIGURATION .................................................................................................... PERIPHERAL HARDWARE FUNCTIONS ................................................................................
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Digital I/O Ports .............................................................................................................................. Clock Generator ............................................................................................................................. Control Functions of Subsystem Clock Oscillator ................................................................... Clock Output Circuit ...................................................................................................................... Basic Interval Timer/Watchdog Timer ........................................................................................ Clock Timer ..................................................................................................................................... Timer/Event Counter ..................................................................................................................... Serial Interface ............................................................................................................................... Bit Sequential Buffer .....................................................................................................................
16 21
21 21 23 24 25 26 27 30 32
7. 8. 9.
INTERRUPT FUNCTIONS AND TEST FUNCTIONS ............................................................... STANDBY FUNCTION ............................................................................................................... RESET FUNCTION .....................................................................................................................
33 35 36 39 40 53 65
10. MASK OPTION ........................................................................................................................... 11. INSTRUCTION SET .................................................................................................................... 12. ELECTRICAL CHARACTERISTICS ......................................................................................... 13. CHARACTERISTIC CURVE (REFERENCE VALUES) ............................................................
4
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
14. EXAMPLES OF RC OSCILLATOR FREQUENCY CHARACTERISTICS (REFERENCE VALUES) ..................................................................................................................................... 15. PACKAGE DRAWINGS ............................................................................................................. 16. RECOMMENDED SOLDERING CONDITIONS ........................................................................ APPENDIX A APPENDIX B APPENDIX C FUNCTIONS OF THE PD750008, PD750108, AND PD75P0116 .................. DEVELOPMENT TOOLS ........................................................................................ RELATED DOCUMENTS ........................................................................................
66 68 70 71 73 77
5
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
1. PIN CONFIGURATION (TOP VIEW)
* 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)
PD750104CU-xxx, PD750104CU(A)-xxx PD750106CU-xxx, PD750106CU(A)-xxx PD750108CU-xxx, PD750108CU(A)-xxx
XT1 XT2 RESET CL1 CL2 P33 P32 P31 P30 P81 P80 P03/SI/SB1 P02/SO/SB0 P01/SCK P00/INT4 P13/TI0 P12/INT2 P11/INT1 P10/INT0 IC VDD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
VSS P40 P41 P42 P43 P50 P51 P52 P53 P60/KR0 P61/KR1 P62/KR2 P63/KR3 P70/KR4 P71/KR5 P72/KR6 P73/KR7 P20/PTO0 P21/PTO1 P22/PCL P23/BUZ
IC : Internally connected (Connect directly to VDD.)
6
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
* 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch)
PD750104GB-xxx-3BS-MTX, PD750104GB(A)-xxx-3BS-MTX PD750106GB-xxx-3BS-MTX, PD750106GB(A)-xxx-3BS-MTX PD750108GB-xxx-3BS-MTX, PD750108GB(A)-xxx-3BS-MTX
P72/KR6 P71/KR5 P70/KR4 P63/KR3 P62/KR2 P61/KR1 P60/KR0 P53 P52 P51 P50
44 43 42 41 40 39 38 37 36 35 34 1 33 2 3 4 5 6 7 8 32 31 30 29 28 27 26
P73/KR7 P20/PTO0 P21/PTO1 P22/PCL P23/BUZ VDD IC P10/INT0 P11/INT1 P12/INT2 NC
P13/TI0 P00/INT4 P01/SCK P02/SO/SB0 P03/SI/SB1 P80 P81 P30 P31 P32 P33
9 25 10 24 11 23 12 13 14 15 16 17 18 19 20 21 22
IC : Internally connected (Connect directly to VDD.)
PIN NAMES
BUZ IC INT2 KR0-KR7 NC P00-P03 P10-P13 P20-P23 P30-P33 P40-P43 P50-P53 P60-P63 : : : : : : : : : : : : Buzzer Clock Main System Clock (RC) Internally Connected External Vectored Interrupt 0, 1, 4 External Test Input 2 Key Return 0-7 No connection Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 P70-P73 P80, P81 PCL RESET SB0, SB1 SCK SI SO TI0 VDD VSS XT1, XT2 : Port 7 : Port 8 : Programmable Clock : Reset : Serial Bus 0, 1 : Serial Clock : Serial Input : Serial Output : Timer Input 0 : Positive Power Supply : Ground : Subsystem Clock (Crystal)
CL1, CL2 : INT0, 1, 4 :
NC P43 P42 P41 P40 VSS XT1 XT2 RESET CL1 CL2
PTO0, PTO1 : Programmable Timer Output 0, 1
7
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
2. BLOCK DIAGRAM
BASIC INTERVAL TIMER/ WATCHDOG TIMER
BIT SEQ. BUFFER (16) PROGRAM COUNTER CY ALU
INTBT TI0/P13 PTO0/P20
RESET
SP (8) SBS
PORT 0
4
P00 - P03
8-BIT TIMER/EVENT COUNTER #0 INTT0 TOUT0
BANK
PORT 1
4
P10 - P13
PTO1/P21
8-BIT TIMER COUNTER #1 INTT1
PORT 2 GENERAL REGISTER PORT 3 PROGRAM MEMORYNote (ROM)
4
P20 - P23
4
P30 - P33
SI/SB1/P03
SO/SB0/P02 SCK/P01
CLOCKED SERIAL INTERFACE INTCSI TOUT0
DECODE AND CONTROL
DATA MEMORY (RAM) 512 x 4 BITS
PORT 4
4
P40 - P43
PORT 5 INT0/P10 INT1/P11 INT2/P12 INT4/P00 KR0/P60KR7/P73 INTERRUPT CONTROL
8
4
P50 - P53
PORT 6
4
P60 - P63
PORT 7 fx/2N WATCH TIMER INTW CLOCK CLOCK OUTPUT DIVIDER CONTROL CPU CLOCK SYSTEM CLOCK GENERATOR SUB MAIN PORT 8 STAND BY CONTROL
4
P70 - P73
BUZ/P23
2
P80, P81
PCL/P22
XT1 XT2
CL1 CL2
IC VDD VSS RESET
Note The ROM capacity depends on the product.
8
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
3. PIN FUNCTIONS
3.1 Port Pins
Pin name P00 P01 P02 P03 P10 P11 P12 P13 P20 P21 P22 P23 P30 - P33 I/O I/O Input/ output Input I/O I/O I/O Input Shared pin INT4 SCK SO/SB0 SI/SB1 INT0 INT1 INT2 TI0 PTO0 PTO1 PCL BUZ Programmable 4-bit I/O port (PORT3). I/O can be specified bit by bit. Built-in pull-up resistors can be connected by software in units of 4 bits. N-ch open-drain 4-bit I/O port (PORT4). A pull-up resistor can be provided bit by bit (mask option). Withstand voltage is 13 V in open-drain mode. N-ch open-drain 4-bit I/O port (PORT5). A pull-up resistor can be provided bit by bit (mask option). Withstand voltage is 13 V in open-drain mode. Programmable 4-bit I/O port (PORT6). I/O can be specified bit by bit. Built-in pull-up resistors can be connected by software in units of 4 bits. x Input E-B 4-bit input port (PORT1). Built-in pull-up resistors can be connected by software in units of 4 bits. A noise eliminator can be selected only when the P10/INT0 pin is used. 4-bit I/O port (PORT2). Built-in pull-up resistors can be connected by software in units of 4 bits. x Input Function 4-bit input port (PORT0). For P01 - P03, built-in pull-up resistors can be connected by software in units of 3 bits. 8-bit I/O x When reset Input I/O circuit typeNote 1
B F F M B
-A -B -C -C
x
Input
E-B
P40 - P43 Note 2
I/O
-
High level (when pull-up resistors are provided) or high impedance High level (when pull-up resistors are provided) or high impedance Input
M-D
P50 - P53 Note 2
I/O
-
M-D
P60 P61 P62 P63 P70 P71 P72 P73 P80 P81
I/O
KR0 KR1 KR2 KR3
F
-A
I/O
KR4 KR5 KR6 KR7
4-bit I/O port (PORT7). Built-in pull-up resistors can be connected by software in units of 4 bits.
Input
F
-A
I/O
-
2-bit I/O port (PORT8). Built-in pull-up resistors can be connected by software in units of 2 bits.
x
Input
E-B
Notes 1. The circle (
) indicates the Schmitt trigger input.
2. When pull-up resistors that can be specified with the mask option are not incorporated (when pins are used as N-ch open-drain input ports), the input leak low current increases when an input instruction or bit operation instruction is executed.
9
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
3.2 Non-Port Pins
Input/ output Input Shared pin P13 I/O circuit typeNote 1
B
Pin name TI0
Function Inputs external event pulse to the timer/event counter Timer/event counter output Timer counter output Clock output Arbitrary frequency output (for buzzer output or system clock trimming) Serial clock I/O Serial data output Serial data bus I/O Serial data input Serial data bus I/O Edge detection vectored interrupt input (both rising and falling edges are detected) Edge detection vectored interrupt input Note 2 (detection edge selectable). A noise eliminator Note 3 can be selected when INT0/P10 is used. Rising edge detection testable input Falling edge detection testable input Falling edge detection testable input Pin for connecting a resistor (R) or capacitor (C) for main system clock oscillation. An external clock cannot be input.
Note 3
When reset Input
-C
PTO0 PTO1 PCL BUZ
Output
P20 P21 P22 P23
Input
E-B
SCK SO/SB0
I/O
P01 P02
Input
F F
-A -B
SI/SB1
P03
M
-C
INT4
Input
P00
B
INT0 INT1 INT2 KR0 - KR3 KR4 - KR7 CL1 CL2
Input
P10 P11
Input
B
-C
Input Input Input -
P12 P60 - P63 P70 - P73 -
Input Input -
F F
-A -A -
XT1
Input
-
XT2
-
Crystal connection pin for subsystem clock generation. When external clock signal is used, it is applied to XT1, and it reverse phase signal is applied to XT2. XT1 can be used as a 1-bit input (test). System reset input (active low) Internally connected. (To be connected directly to VDD) Positive power supply Ground potential
-
-
RESET IC
Input -
-
-
B
-
VDD VSS
-
-
-
-
Notes 1. The circle ( 3. Asynchronous
) indicates the Schmitt trigger input.
2. With a noise eliminator/asynchronously selectable
10
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
3.3 Pin Input/Output Circuits (1/2)
The input/output circuit of each PD750108 pin is shown below in a simplified manner.
Type A Type D
VDD Data P-ch IN
VDD P-ch OUT
N-ch
Output disable
N-ch
CMOS input buffer
Push-pull output which can be set to high-impedance output (off for both P-ch and N-ch)
Type B
Type E-B VDD P.U.R. P.U.R. enable P-ch
IN
Data Type D Output disable IN/OUT
Schmitt trigger input with hysteresis
Type A
P.U.R.: Pull-Up Resistor Type B-C Type F-A VDD VDD P.U.R. P.U.R. enable P.U.R. enable Data Type D Output disable IN
Type B
P.U.R. P-ch
P-ch
IN/OUT
P.U.R.: Pull-Up Resistor
P.U.R.: Pull-Up Resistor
11
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
(2/2)
Type F-B VDD P.U.R. P.U.R. enable Output disable (P) Data Output disable Output disable (N) P.U.R.: Pull-Up Resistor P.U.R.: Pull-Up Resistor Type M-D VDD P.U.R. (Mask option) N-ch (Withstand voltage: +13 V) IN/OUT N-ch VDD P-ch IN/OUT Data Output disable N-ch P-ch P.U.R. enable Type M-C VDD P.U.R. P-ch IN/OUT
Data Output disable Input instruction VDD P-ch P.U.RNote
Voltage restriction circuit (Withstand voltage: +13 V) P.U.R.: Pull-Up Resistor Note Pull-up resistor that operates only when pull-up resistors that can be specified with the mask option are not incorporated and an input instruction is executed. (When the pin is low, the current flows from VDD to the pin.)
12
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
3.4 Connection of Unused Pins Table 3-1. Connection of Unused Pins
Pin name P00/INT4 P01/SCK P02/SO/SB0 P03/SI/SB1 P10/INT0 - P12/INT2 P13/TI0 P20/PTO0 P21/PTO1 P22/PCL P23/BUZ P30 - P33 P40 - P43 Input state : To be connected to VSS (Do not connect to a pull-up resistor specified with a mask option.) Input state : To be connected to VSS or VDD through a separate resistor Output state : To be left open P80, P81 XT1Note XT2Note IC To be connected to VSS or VDD To be left open To be connected directly to VDD Input state : To be connected to VSS or VDD through a separate resistor Output state : To be left open Recommended connection To be connected to VSS or VDD To be connected to VSS or VDD through a separate resistor To be connected to VSS To be connected to VSS or VDD
Output state : To be connected to VSS P50 - P53
P60/KR0 - P63/KR3 P70/KR4 - P73/KR7
Note When the subsystem clock is not used, set SOS.0 to 1 (not to use the builtin feedback resistor).
13
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
4. Mk MODE/Mk MODE SWITCH FUNCTION
4.1 Differences between Mk Mode and Mk Mode
The CPU of the PD750108 has two modes (Mk mode and Mk mode) and which mode is used is selectable. Bit 3 of the stack bank selection register (SBS) determines the mode. * Mk mode: * Mk mode: This mode has the upward compatibility with the 75X series. It can be used in the 75XL CPUs having a ROM of up to 16 KB. This mode is not compatible with the 75X series. It can be used in all 75XL CPUs, including those having a ROM of 16 KB or more. Table 4-1 shows the differences between Mk mode and Mk mode. Table 4-1. Differences between Mk Mode and Mk Mode
Mk mode Number of stack bytes in a subroutine instruction BRA !addr1 instruction CALLA !addr1 instruction CALL !addr instruction CALLF !faddr instruction 2 bytes Mk mode 3 bytes
None
Available
3 machine cycles 2 machine cycles
4 machine cycles 3 machine cycles
Caution Mk mode can be used to support a program area larger than 16K bytes in the 75X series or 75XL series. This mode enhances a software compatibility with products whose program area is larger than 16K bytes. If Mk mode is selected, when the subroutine call instruction is executed, the number of stack bytes (use area) will be increased by one byte for each stack, compared to Mk mode. When a CALL !addr or CALLF !faddr instruction is executed, it takes one more machine cycle. Therefore, Mk mode should be used for applications for which RAM efficiency or processing capabilities is more critical than a software compatibility.
14
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
4.2 Setting of the Stack Bank Selection Register (SBS)
The Mk mode and Mk mode are switched by stack bank selection register. Figure 4-1 shows the register configuration. The stack bank selection register is set with a 4-bit memory operation instruction. To use the CPU in Mk mode, initialize the register to 100xBNote at the beginning of the program. To use the CPU in Mk mode, initialize it to 000xBNote. Note Specify the desired value in x. Figure 4-1.
Address F84H 3 SBS3 2 SBS2 1 SBS1
Stack Bank Selection Register Format
0 SBS0 Symbol SBS
Stack area designation 0 0 0 1 Memory bank 0 Memory bank 1
Other settings are inhibited.
0
Bit 2 must be set to 0.
Mode switching designation 0 1 Mk mode Mk mode
Caution The CPU operates in Mk mode after the RESET signal is issued, because bit 3 of SBS is set to 1. Set bit 3 of SBS to 0 (Mk mode) to use the CPU in Mk mode.
15
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
5. MEMORY CONFIGURATION
* Program memory (ROM) : 4,096 x 8 bits (0000H-0FFFH): PD750104 6,144 x 8 bits (0000H-17FFH): PD750106 8,192 x 8 bits (0000H-1FFFH): PD750108
* 0000H to 0001H
Vector address table for holding the RBE and MBE values and program start address when a RESET signal is issued (allowing a reset start at an arbitrary address)
* 0002H to 000DH
Vector address table for holding the RBE and MBE values and program start address for each vectored interrupt (allowing interrupt processing to be started at an arbitrary address)
* 0020H to 007FH
Table area referenced by the GETI instructionNote Note The GETI instruction requires only one byte to represent an arbitrary two-byte or three-byte instruction or two one-byte instructions, reducing the number of program bytes. * Data memory (RAM)
* Data area
: 512 x 4 bits (000H to 1FFH)
* Peripheral hardware area: 128 x 4 bits (F80H to FFFH)
16
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Figure 5-1. Program Memory Map (in PD750104)
Address 7 6 5 0 4 0 Internal reset start address Internal reset start address 0 0 2 H MBE RBE 0 0 INTBT/INT4 INTBT/INT4 0 0 4 H MBE RBE 0 0 INT0 INT0 0 0 6 H MBE RBE 0 0 INT1 INT1 0 0 8 H MBE RBE 0 0 INTCSI INTCSI 0 0 A H MBE RBE 0 0 INTT0 INTT0 0 0 C H MBE RBE 0 0 INTT1 INTT1 start address start address start address start address start address start address start address start address start address start address start address start address 0 (high-order 4 bits) (low-order 8 bits) (high-order 4 bits) (low-order 8 bits) (high-order 4 bits) (low-order 8 bits) (high-order 4 bits) (low-order 8 bits) (high-order 4 bits) (low-order 8 bits) (high-order 4 bits) (low-order 8 bits) (high-order 4 bits) (low-order 8 bits) CALLF ! faddr instruction entry address
0 0 0 H MBE RBE
Branch address of BR BCXA, BR BCDE, BR !addr, BRA !addr1Note or CALLA !addr1Note instruction CALL !addr instruction subroutine entry address BR $addr instruction relative branch address -15 to -1, +2 to +16
020H GETI instruction reference table 07FH 080H
BRCB !caddr instruction branch address
7FFH 800H
Branch destination address and subroutine entry address when GETI instruction is executed
FFFH
Note Can be used only in the Mk mode. Remark In addition to the above, the BR PCDE and BR PCXA instructions can cause a branch to an address with only the 8 low-order bits of the PC changed.
17
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Figure 5-2. Program Memory Map (in PD750106)
Address 7 6 5 0 Internal reset start address Internal reset start address 0 0 0 2 H MBE RBE 0 INTBT/INT4 INTBT/INT4 0 0 0 4 H MBE RBE 0 INT0 INT0 0 0 0 6 H MBE RBE 0 INT1 INT1 0 0 0 8 H MBE RBE 0 INTCSI INTCSI 0 0 0 A H MBE RBE 0 INTT0 INTT0 0 0 0 C H MBE RBE 0 INTT1 INTT1 start address start address start address start address start address start address start address start address start address start address start address start address 0 (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) BRCB !caddr instruction branch address CALLF !faddr instruction entry address Branch address of BR BCXA, BR BCDE, BR !addr, BRA !addr1Note or CALLA !addr1Note instruction CALL !addr instruction subroutine entry address BR $addr instruction relative branch address -15 to -1, +2 to +16
0 0 0 0 H MBE RBE
0020H GETI instruction reference table 007FH 0080H Branch destination address and subroutine entry address when GETI instruction is executed 07FFH 0800H
0FFFH 1000H BRCB !caddr instruction branch address 17FFH
Note Can be used only in the Mk mode. Remark In addition to the above, the BR PCDE and BR PCXA instructions can cause a branch to an address with only the 8 low-order bits of the PC changed.
18
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Figure 5-3. Program Memory Map (in PD750108)
Address 7 6 5 0 Internal reset start address Internal reset start address 0 0 0 2 H MBE RBE 0 INTBT/INT4 INTBT/INT4 0 0 0 4 H MBE RBE 0 INT0 INT0 0 0 0 6 H MBE RBE 0 INT1 INT1 0 0 0 8 H MBE RBE 0 INTCSI INTCSI 0 0 0 A H MBE RBE 0 INTT0 INTT0 0 0 0 C H MBE RBE 0 INTT1 INTT1 start address start address start address start address start address start address start address start address start address start address start address start address 0 (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) (high-order 5 bits) (low-order 8 bits) BRCB !caddr instruction branch address CALLF !faddr instruction entry address Branch address of BR BCXA, BR BCDE, BR !addr, BRA !addr1Note or CALLA !addr1Note instruction CALL !addr instruction subroutine entry address BR $addr instruction relative branch address -15 to -1, +2 to +16
0 0 0 0 H MBE RBE
0020H GETI instruction reference table 007FH 0080H Branch destination address and subroutine entry address when GETI instruction is executed 07FFH 0800H
0FFFH 1000H BRCB !caddr instruction branch address 1FFFH
Note Can be used only in the Mk mode. Remark In addition to the above, the BR PCDE and BR PCXA instructions can cause a branch to an address with only the 8 low-order bits of the PC changed.
19
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Figure 5-4. Data Memory Map
Data memory Area for 000H general-purpose register 01FH 020H (32 x 4) Memory bank
256 x 4 (224 x 4) Data area Static RAM (512 x 4)
0
Stack areaNote
0FFH 100H
256 x 4
1
1FFH
Not contained
F80H Peripheral hardware area FFFH 128 x 4
15
Note Memory bank 0 or 1 can be selected as the stack area.
20
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6. PERIPHERAL HARDWARE FUNCTIONS
6.1 Digital I/O Ports
The PD750108 has the following three types of I/O port: * 8 CMOS input pins (PORT0 and PORT1) * 18 CMOS I/O pins (PORT2, PORT3, and PORT6 to PORT8) * 8 N-ch open-drain I/O pins (PORT4 and PORT5) Total: 34 pins Table 6-1. Digital Ports and Their Features
Port name PORT0 Function 4-bit input Operation and feature When the serial interface function is used, dual-function pins function as output pins in some operation modes. 4-bit input port Remarks Also used as INT4, SCK, SO/SB0, or SI/SB1. Also used as INT0, INTI, INT2 or TI0. Also used as PTO0, PTO1, PCL, or BUZ. -
PORT1
PORT2
4-bit I/O
Allows input or output mode setting in units of 4 bits.
PORT3 PORT4 PORT5 4-bit I/O (N-ch open-drain can withstand 13 V)
Allows input or output mode setting in units of 1 bit. Allows input or output mode setting in units of 4 bits. Whether to use pull-up resistors can be specified bit by bit with the mask option. Allows input or output mode setting in units of 1 bit. Allows input or output mode setting in units of 4 bits. 2-bit I/O Ports 4 and 5 can be paired, allowing data I/O in units of 8 bits.
PORT6
4-bit I/O
PORT7
Ports 6 and 7 can be paired, allowing data I/O in units of 8 bits.
Also used as one of KR0 to KR3. Also used as one of KR4 to KR7. -
PORT8
Allows input or output mode setting in units of 2 bits.
6.2
Clock Generator
The clock generator generates clocks which are supplied to the peripheral hardware in the CPU. Figure 6-1 shows the configuration of the clock generator. Operation of the clock generator is specified by the processor clock control register (PCC) and system clock control register (SCC). The main system clock and subsystem clock are used. The instruction execution time can be made variable. * 4, 8, 16, or 64 s (when the main system clock is at 1.0 MHz) * 2, 4, 8, or 32 s (when the main system clock is at 2.0 MHz) * 122 s (when the subsystem clock is at 32.768 kHz)
21
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Figure 6-1. Clock Generator Block Diagram
XT1 Subsystem clock generator fXT Clock timer
* * * * * * *
XT2 CL1
Basic interval timer (BT) Timer/event counter Timer counter Serial interface Clock timer INT0 noise eliminator Clock output circuit
CL2
Main system clock generator RC oscillation
fCC 1/2 1/4 1/16
1/1 to 1/4096 Frequency divider
WM.3 SCC SCC3 SCC0
Internal bus
Oscillator disable signal
Selector Frequency divider Selector 1/4 * CPU * INT0 noise eliminator * Clock output circuit
PCC PCC0
PCC1 4 HALT
Note
HALT flip-flop PCC2 S
STOPNote
PCC3 R Q
PCC2, PCC3 clear signal
STOP flip-flop Q S
Wait release signal from BT RESET signal
R
Standby release signal from interrupt control circuit
Note Instruction execution Remarks 1. fCC = Main system clock frequency 2. fXT = Subsystem clock frequency 3. = CPU clock 4. PCC: Processor clock control register 5. SCC: System clock control register 6. One clock cycle (tCY) of the CPU clock () is equal to one machine cycle of an instruction.
22
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6.3 Control Functions of Subsystem Clock Oscillator
The subsystem clock oscillator of the PD750108 has two control functions to decrease the supply current. * The function to select with the software whether to use the built-in feedback resistorNote * The function to suppress the supply current by reducing the drive current of the built-in inverter when the supply voltage is high (VDD 2.7 V) Note When the subsystem clock is not used, set SOS.0 to 1 (not to use the built-in feedback resistor), connect XT1 to VSS or VDD, and open XT2. This makes it possible to reduce the supply current required by the subsystem clock oscillator. Each function can be used by switching bits 0 and 1 in the sub-oscillator control register (SOS). (See Figure 62.) Figure 6-2. Subsystem Clock Oscillator
SOS.0
Feedback resistor
Inverter
SOS.1 XT1 XT2
23
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6.4 Clock Output Circuit The clock output circuit outputs a clock pulse from the P22/PCL pin. This clock pulse is used for remote control waveform output, peripheral LSIs, etc. * Clock output (PCL): , 125, 62.5, or 15.6 kHz (at 1.0 MHz)
, 250, 125, or 31.3 kHz (at 2.0 MHz)
Figure 6-3. Clock Output Circuit Configuration
From the clock generator fCC/23 Selector fCC/24 fCC/2
6
Output buffer PCL/P22
PORT2.2 CLOM3 0 CLOM1 CLOM0 CLOM P22 output latch
Bit 2 of PMGB
Port 2 input/ output mode specification bit
4 Internal bus
Remark Measures are taken to prevent outputting a narrow pulse when selecting clock output enable/disable.
24
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6.5 Basic Interval Timer/Watchdog Timer
The basic interval timer/watchdog timer has these functions: * Interval timer operation which generates a reference timer interrupt * Operation as a watchdog timer for detecting program crashes and resetting the CPU * Selection of wait time for releasing the standby mode and counting the wait time * Reading out the count value Figure 6-4. Block Diagram of the Basic Interval Timer/Watchdog Timer
From the clock generator fCC/25 fCC/2
7
Clear signal
Clear signal
MPX fCC/2
9
Basic interval timer (8-bit frequency divider)
Set signal
BT interrupt request flag
fCC/212
BT
IRQBT
Vectored interrupt request signal
3
Wait release signal for standby release BTM0 BTM 8 Internal bus WDTM 1 SET1
Internal reset signal
Note
BTM3 SET1Note
BTM2 4
BTM1
Note Instruction execution
25
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6.6 Clock Timer
The PD750108 contains one channel for a clock timer. The clock timer provides the following functions: * Sets the test flag (IRQW) with a 0.5 sec interval (when WM0 = 1). * The standby mode can be released by IRQW. * The 0.5 second interval can be generated from the subsystem clock (32.768 kHz). * The time interval can be made 128 times faster by selecting the fast mode. This is convenient for program debugging, testing, etc. * Any of the frequencies (fW/2 4, fW/23 , or fW can be output to the P23/BUZ pin. This can be used for beep and system clock frequency trimming. * The clock can be started from zero seconds by clearing the frequency divider. Figure 6-5. Clock Timer Block Diagram
fw 27 fCC Note 128 (7.8125 kHz) fXT (32.768 kHz) fw 23 fw 24 Clear fW 32.768 kHz or 7.8125 kHz fw 214 Frequency divider INTW IRQW set signal
Selector
From the clock generator
Selector
Selector
Output buffer P23/BUZ
WM WM7 0 WM5 WM4 WM3 WM2 WM1 WM0
PORT2.3 P23 output latch
Bit 2 of PMGB
Port 2 input/ output mode
8
Bit test instruction
Internal bus
Note When a frequency-divided main system clock is used, 32.768 kHz cannot be selected as the source clock frequency. Remark The values in parentheses in the figure above are for fCC = 1.0 MHz, fXT = 32.768 kHz.
26
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6.7 Timer/Event Counter
The PD750108 contains one channel for a timer/event counter and one channel for a timer counter. Figures 6-6 and 6-7 show their configurations. The timer/event counter provides the following functions: * Programmable interval timer operation * Outputs square-wave signal of an arbitrary frequency to the PTOn pin (n = 0, 1) * Event counter operation (channel 0 only) * Divides the TI0 pin input by N and outputs to the PTO0 pin (frequency divider operation) (channel 0 only) * Supplies serial shift clock to the serial interface circuit (channel 0 only) * Count read function
27
28
8
SET1Note
Figure 6-6. Timer/Event Counter Block Diagram
Internal bus TM0 8 8 TMOD0 Modulo register (8) TOE0
T0 enable flag
PORT2.0
P20 output latch signal
Bit 2 of PMGB
TM06 TM05 TM04 TM03 TM02
Port 2 input/ output mode
Port input buffer
8
Match
TOUT0 TOUT flip-flop Reset T0 Output buffer
To serial interface
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Comparator (8) 8 Input buffer TI0/P13 fCC/24 6 From the clock fCC/2 generator fCC/28 fCC/210 MPX CP Clear signal Count register (8)
PTO0/P20
INTT0 IRQT0 set signal
Timer operation start signal RESET IRQT0 clear signal
Note Instruction execution
Figure 6-7. Timer Counter Block Diagram
Internal bus 8 SET1
Note
TM1
8
8 TMOD1 Modulo register (8)
TOE1
T1 enable flag
PORT2.1
P21 output latch
Bit 2 of PMGB
TM16 TM15 TM14 TM13 TM12
Port 2 input/ output mode
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
8
Match
Comparator (8) 8
TOUT flip-flop Reset Output buffer
PTO1/P21
From the clock generator

T1 fCC/26 fCC/28 fCC/210 fCC/212 INTT1 Count register (8) MPX CP Clear signal IRQT1 set signal
Timer operation start signal RESET IRQT1 clear signal
Note Instruction execution
29
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6.8 Serial Interface
PD750108 has an 8-bit synchronous serial interface. The serial interface has the following four types of mode.
* Operation stop mode * Three-wire serial I/O mode * Two-wire serial I/O mode * SBI mode
30
Figure 6-8. Serial Interface Block Diagram
Internal bus 8/4 CSIM Bit test 8 8 8 Slave address register (SVA) (8) Coincidence RELT signal Address comparator P03/SI/SB1 SET CLR SO latch Selector Shift register (SIO) (8) D Q ACKE BSYE ACKT (8) CMDT SBIC Bit manipulation Bit test
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
P02/SO/SB0 Selector Bus release/ command/ acknowledge detection circuit P01/SCK RELD CMDD ACKD Busy/ acknowledge output circuit
INTCSI Serial clock counter INTCSI control circuit IRQCSI set signal fCC/23 fCC/24 fCC/26 TOUT0 (from timer/event counter)
P01 output latch
Serial clock control circuit
Serial clock selector
External SCK
31
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
6.9 Bit Sequential Buffer: 16 Bits
The bit sequential buffer (BSB) is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially updated by bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units. Figure 6-9. Bit Sequential Buffer Format
Address Bit Symbol 3 FC3H 2 1 0 3 FC2H 2 1 0 3 FC1H 2 1 0 3 FC0H 2 1 0
BSB3
BSB2
BSB1
BSB0
L register
L = FH
L = CH L = BH
L = 8H L = 7H
L = 4H L = 3H
L = 0H
DECS L INCS L
Remarks 1. In pmem.@L addressing, bit specification is shifted according to the L register. 2. In pmem.@L addressing, the bit sequential buffer can be manipulated at any time regardless of MBE/ MBS specification.
32
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
7. INTERRUPT FUNCTIONS AND TEST FUNCTIONS
The PD750108 has seven interrupt sources and two test sources. One test source, INT2, has two types of edge detection testable input pins. The interrupt control circuit of the PD750108 has the following functions. (1) Interrupt functions * Hardware controlled vectored interrupt function which can control whether or not to accept an interrupt using the interrupt flag (IExxx) and interrupt master enable flag (IME). * The interrupt start address can be set arbitrarily. * Multiple interrupt function which can specify the priority by the interrupt priority specification register (IPS) * Test function of an interrupt request flag (IRQxxx) (The software can confirm that an interrupt occurred.) * Release of the standby mode (Interrupts released by an interrupt enable flag can be selected.) (2) Test functions * Whether test request flags (IRQxxx) are issued can be checked with software. * Release of the standby mode (A test source to be released can be selected with test enable flags.)
33
Selector
34
2 IM2 1 IM1 4 IM0 INTBT Both-edge detector
Note
Figure 7-1. Interrupt Control Circuit Block Diagram
Internal bus
IME Interrupt enable flag (IExxx)
IPS
IST1
IST0
IRQBT VRQn
Decoder
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
INT4/P00
IRQ4
INT0/P10
Edge detector Edge detector INTCSI
IRQ0
INT1/P11
IRQ1 Vector table address generator
IRQCSI
Priority control circuit
INTT0
IRQT0
INTT1
IRQT1
INTW Rising edge detector
IRQW
INT2/P12
Selector
IRQ2
Standby release signal
KR0/P60 KR7/P73
Falling edge detector
IM2
Note Noise eliminator (Standby release is not possible when the noise eliminator is selected.)
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
8. STANDBY FUNCTION
The PD750108 has two different standby modes (STOP mode and HALT mode) to reduce power dissipation while waiting for program execution. Table 8-1. Standby Mode Statuses
Item Instruction for setting System clock for setting Mode STOP mode STOP instruction Can be set only when operating on the main system clock. The main system clock stops its operation. HALT mode HALT instruction Can be set either with the main system clock or the subsystem clock. Only the CPU clock stops its operation (oscillation continues). Can operate only at main system clock oscillation. BT mode : IRQBT is set at the reference interval. WT mode : A reset signal is generated when the BT overflows. Can operate only when external SCK input is selected as the serial clock or at main system clock oscillation. Can operate only when TI0 pin input is specified as the count clock or at main system clock oscillation. Can operate.Note 1 Can operate.
Operation status
Clock oscillator
Basic interval timer/watchdog timer
Does not operate.
Serial interface
Can operate only when the external SCK input is selected for the serial clock.
Timer/event counter
Can operate only when the TI0 pin input is selected for the count clock.
Timer counter Clock timer
Does not operate. Can operate when fXT is selected as the count clock. INT1, INT2, and INT4 can operate. Only INT0 cannot operate. Note 2 Does not operate.
External interrupt
CPU Release signal
An interrupt request signal from hardware whose operation is enabled by the interrupt enable flag or the generation of a RESET signal
Notes 1. Operation is possible only when the main system clock operates. 2. Operation is possible only when the noise eliminator is not selected by bit 2 of the edge detection mode register (IM0) (when IM02 = 1).
35
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
9. RESET FUNCTION
The PD750108 is reset with the external reset signal (RESET) or the reset signal received from the basic interval timer/watchdog timer. When either reset signal is input, the internal reset signal is generated. Figure 9-1 shows the configuration of the reset circuit. Figure 9-1. Configuration of Reset Functions
RESET
Internal reset signal
Reset signal from basic interval timer/watchdog timer
WDTM
Internal bus
When the RESET signal is generated, all hardware is initialized as indicated in Table 9-1. Figure 9-2 shows the reset operation timing. Figure 9-2. Reset Operation by Generation of RESET Signal
Wait
Note
RESET signal is generated
Operating mode or standby mode
HALT mode
Operating mode
Internal reset operation
Note 56/fCC (28 s at 2.0 MHz, 56 s at 1.0 MHz)
36
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Table 9-1. Status of the Hardware after a Reset (1/2)
Generation of a RESET signal in a standby mode Generation of a RESET signal during operation 4 low-order bits at address 0000H in program memory are set in PC bits 11 to 8, and the data at address 0001H are set in PC bits 7 to 0. 5 low-order bits at address 0000H in program memory are set in PC bits 12 to 8, and the data at address 0001H are set in PC bits 7 to 0. Undefined 0 0 Bit 6 at address 0000H in program memory is set in RBE, and bit 7 is set in MBE. Undefined 1000B Undefined Undefined 0, 0 Undefined 0 0
Hardware Program counter (PC)
PD750104
4 low-order bits at address 0000H in program memory are set in PC bits 11 to 8, and the data at address 0001H are set in PC bits 7 to 0. 5 low-order bits at address 0000H in program memory are set in PC bits 12 to 8, and the data at address 0001H are set in PC bits 7 to 0. Held 0 0 Bit 6 at address 0000H in program memory is set in RBE, and bit 7 is set in MBE. Undefined 1000B Held Held 0, 0 Undefined 0 0
PD750106, 750108
PSW
Carry flag (CY) Skip flags (SK0 to SK2) Interrupt status flags (IST0, IST1) Bank enable flags (MBE, RBE)
Stack pointer (SP) Stack bank selection register (SBS) Data memory (RAM) General-purpose registers (X, A, H, L, D, E, B, C) Bank selection register (MBS, RBS) Basic interval timer/ watchdog timer Counter (BT) Mode register (BTM) Watchdog timer enable flag (WDTM) Timer/event counter Counter (T0) Modulo register (TMOD0) Mode register (TM0) TOE0, TOUT flip-flop Timer counter Counter (T1) Modulo register (TMOD1) Mode register (TM1) TOE1, TOUT flip-flop Clock timer Serial interface Mode register (WM) Shift register (SIO) Operation mode register (CSIM) SBI control register (SBIC) Slave address register (SVA)
0 FFH 0 0, 0 0 FFH 0 0, 0 0 Held 0 0 Held
0 FFH 0 0, 0 0 FFH 0 0, 0 0 Undefined 0 0 Undefined
37
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Table 9-1. Status of the Hardware after a Reset (2/2)
Generation of a RESET signal in a standby mode 0 0 0 0 Reset (0) 0 0 0, 0, 0 Generation of a RESET signal during operation 0 0 0 0 Reset (0) 0 0 0, 0, 0
Hardware Clock generator, clock output circuit Processor clock control register (PCC) System clock control register (SCC) Clock output mode register (CLOM) Sub-oscillator control register (SOS) Interrupt Interrupt request flag (IRQxxx) Interrupt enable flag (IExxx) Priority selection register (IPS) INT0, INT1, and INT2 mode registers (IM0, IM1, IM2) Digital ports Output buffer Output latch I/O mode registers (PMGA, PMGB, PMGC) Pull-up resistor specification registers (POGA, POGB) Bit sequential buffers (BSB0 to BSB3)
Off Clear (0) 0
Off Clear (0) 0
0
0
Held
Undefined
38
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
10. MASK OPTION
The PD750108 has the following mask options:
* Mask option of P40 to P43 and P50 to P53
Can specify whether to incorporate the pull-up resistor.
1 2
The pull-up resistor is incorporated bit by bit. The pull-up resistor is not incorporated.
* Mask option of standby function
Can specify the wait time when STOP mode was released by an interrupt.
1 2
29/fCC (256 s at 2.0 MHz, 512 s at 1.0 MHz) No wait
* Mask option of subsystem clock
Can specify whether to enable the built-in feedback resistor.
1 2
The built-in feedback resistor is enabled (it is turned on or off by software). The built-in feedback resistor is disabled (it is cut by hardware).
39
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
11. INSTRUCTION SET
(1) Operand identifier and its descriptive method The operands are described in the operand column of each instruction according to the descriptive method for the operand format of the appropriate instructions. (For details, refer to the RA75X Assembler Package User's Manual: Language (EEU-1363).) For descriptions in which alternatives exist, one element should be selected. Capital letters and plus and minus signs are keywords; therefore, they should be described as they are. For immediate data, the appropriate numerical values or labels should be described. The symbols of register flags can be used as a label instead of mem, fmem, pmem, and bit. (For details, refer to the PD750108 User's Manual (U11330E).) However, there are some restrictions on usable labels for fmem and pmem.
Representation format reg reg1 rp rp1 rp2 rp' rp'1 rpa rpa1 n4 n8 mem bit fmem pmem addr X, A, B, C, D, E, H, L X, B, C, D, E, H, L
Description
XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL' HL, HL+, HL-, DE, DL DE, DL 4-bit immediate data or label 8-bit immediate data or label 8-bit immediate data or labelNote 2-bit immediate data or label FB0H - FBFH, FF0H - FFFH immediate data or label FC0H - FFFH immediate data or label 0000H - 0FFFH immediate data or label (PD750104) 0000H - 17FFH immediate data or label (PD750106) 0000H - 1FFFH immediate data or label (PD750108) 0000H - 0FFFH immediate data or label (PD750104) 0000H - 17FFH immediate data or label (PD750106) 0000H - 1FFFH immediate data or label (PD750108) 12-bit immediate data or label 11-bit immediate data or label 20H - 7FH immediate data (however, bit 0 = 0) or label PORT0 - PORT8 IEBT, IET0, IET1, IE0 - IE2, IE4, IECSI, IEW RB0 - RB3 MB0, MB1, MB15
addr1(for Mk mode only)
caddr faddr taddr PORTn IExxx RBn MBn
Note Only even address can be specified for 8-bit data processing.
40
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
(2) Symbol definitions in operation description A B C D E H L X XA BC DE HL XA' BC' DE' HL' PC SP CY PSW MBE RBE IME IPS IExxx RBS MBS PCC . (xx) xxH : A register; 4-bit accumulator : B register : C register : D register : E register : H register : L register : X register : Register pair (XA); 8-bit accumulator : Register pair (BC) : Register pair (DE) : Register pair (HL) : Extended register pair (XA') : Extended register pair (BC') : Extended register pair (DE') : Extended register pair (HL') : Program counter : Stack pointer : Carry flag; Bit accumulator : Program status word : Memory bank enable flag : Register bank enable flag : Interrupt master enable flag : Interrupt priority specification register : Interrupt enable flag : Register bank selection register : Memory bank selection register : Processor clock control register : Address bit delimiter : Contents addressed by xx : Hexadecimal data
PORTn : Port n (n = 0 to 8)
41
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
(3) Symbols used for the addressing area column
*1 *2 *3 MB = MBE * MBS (MBS = 0, 1, 15) MB = 0 MBE = 0 : MB = 0 (000H - 07FH), MB = 15 (F80H - FFFH) MBE = 1 : MB = MBS (MBS = 0, 1, 15) *4 *5 *6 MB = 15, fmem = FB0H - FBFH, FF0H - FFFH MB = 15, pmem = FC0H - FFFH addr = 0000H - 0FFFH (PD750104), 0000H - 17FFH ( PD750106) 0000H - 1FFFH (PD750108) *7 addr, addr1 = (Current PC) - 15 to (Current PC) - 1 (Current PC) + 2 to (Current PC) + 16 *8 caddr = 0000H - 0FFFH ( PD750104) 0000H - 0FFFH (PC12 = 0: PD750106, 750108) 1000H - 17FFH (PC12 = 1: PD750106) 1000H - 1FFFH (PC12 = 1: PD750108) *9 * 10 * 11 faddr = 0000H - 07FFH taddr = 0020H - 007FH Mk mode only addr1 = 0000H - 0FFFH ( PD750104) 0000H - 17FFH (PD750106) 0000H - 1FFFH ( PD750108) Program memory addressing Data memory addressing
Remarks 1. MB indicates the memory bank that can be accessed. 2. For *2, MB = 0 regardless of MBE and MBS settings. 3. For *4 and *5, MB = 15 regardless of MBE and MBS settings. 4. For *6 to *11, each addressable area is indicated. (4) Description of machine cycle column S indicates the number of machine cycles necessary for skipping any skip instruction. The value of S changes as follows: * When no skip is performed * When a 3-byte instructionNote is skipped : S=0 : S=2 * When a 1-byte or 2-byte instruction is skipped : S = 1
Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr, and CALLA !addr1 instructions. Caution The GETI instruction is skipped in one machine cycle. One machine cycle is equal to one cycle (= tCY) of the CPU clock (), and four types of times are available for selection according to the PCC setting.
42
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 1 2 2 2 2 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 1 2 1 1 2 2 2 2 1 2+S 2+S 1 2 1 2 2 2 2 2 2 2 2 2 1 2+S 2+S 1 2 2 2 1 2 3 A n4 reg1 n4 XA n8 HL n8 rp2 n8 A (HL) A (HL), then L L + 1 A (HL), then L L - 1 A (rpa1) XA (HL) (HL) A (HL) XA A (mem) XA (mem) (mem) A (mem) XA A reg XA rp' reg1 A rp'1 XA A (HL) A (HL), then L L + 1 A (HL), then L L - 1 A (rpa1) XA (HL) A (mem) XA (mem) A reg1 XA rp' * PD750104 XA (PC11-8 + DE) ROM * PD750106, 750108 XA (PC12-8 + DE) ROM XA, @PCXA 1 3 * PD750104 XA (PC11-8 + XA) ROM * PD750106, 750108 XA (PC12-8 + XA) ROM XA, @BCDE XA, @BCXA 1 1 3 3 XA (BCDE) ROMNote XA (BCXA) ROM Note *6 *6 *1 *1 *1 *2 *1 *3 *3 L=0 L = FH *1 *1 *1 *2 *1 *1 *1 *3 *3 *3 *3 L=0 L = FH String A String B
Group
Mnemonic MOV
Operand
Operation
Addressing area
Skip condition String A
Transfer
A, #n4 reg1, #n4 XA, #n8 HL, #n8 rp2, #n8 A, @HL A, @HL+ A, @HLA, @rpa1 XA, @HL @HL, A @HL, XA A, mem XA, mem mem, A mem, XA A, reg XA, rp' reg1, A rp'1, XA
XCH
A, @HL A, @HL+ A, @HLA, @rpa1 XA, @HL A, mem XA, mem A, reg1 XA, rp'
Table reference
MOVT
XA, @PCDE
Note Set register B to 0 in the PD750104. Only the LSB is valid in register B in the PD750106 and PD750108.
43
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 2 2 2 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 2 1+S 2+S 1+S 2+S 2+S 1 2 2 1+S 2+S 2+S 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 1+S 1+S 2+S 2+S 1+S 2+S Addressing area *4 *5 *1 *4 *5 *1 carry carry *1 carry carry carry *1 Skip condition
Group
Mnemonic
Operand
Operation CY (fmem.bit) CY (pmem7-2 + L3-2.bit(L1-0)) CY (H + mem3-0.bit) (fmem.bit) CY (pmem7-2 + L3-2.bit(L1-0)) CY (H + mem3-0.bit) CY A A + n4 XA XA + n8 A A + (HL) XA XA + rp' rp'1 rp'1 + XA A, CY A + (HL) + CY XA, CY XA + rp' + CY rp'1, CY rp'1 + XA + CY A A - (HL) XA XA - rp' rp'1 rp'1 - XA A, CY A - (HL) - CY XA, CY XA - rp' - CY rp'1, CY rp'1 - XA - CY
Bit transfer MOV1
CY, fmem.bit CY, pmem.@L CY, @H+mem.bit fmem.bit, CY pmem.@L, CY @H+mem.bit, CY
Arithmetic
ADDS
A, #n4 XA, #n8 A, @HL XA, rp' rp'1, XA
ADDC
A, @HL XA, rp' rp'1, XA
SUBS
A, @HL XA, rp' rp'1, XA
*1
borrow borrow borrow
SUBC
A, @HL XA, rp' rp'1, XA
*1
AND
A, #n4 A, @HL XA, rp' rp'1, XA
OR
A, #n4 A, @HL XA, rp' rp'1, XA
XOR
A, #n4 A, @HL XA, rp' rp'1, XA
n4 A A (HL) XA XA rp' rp'1 rp'1 XA A A n4 A A (HL) XA XA rp' rp'1 rp'1 XA A A n4 A A (HL) XA XA rp' rp'1 rp'1 XA
AA CY A0, A3 CY, An-1 An AA reg reg + 1 rp1 rp1 + 1 (HL) (HL) + 1 (mem) (mem) + 1 reg reg - 1 rp' rp' - 1
*1
*1
*1
Accumulator manipulation Increment/ decrement
RORC NOT INCS
A A reg rp1 @HL mem
reg = 0 rp1 = 00H *1 *3 (HL) = 0 (mem) = 0 reg = FH rp' = FFH
DECS
reg rp'
44
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 2 2 1 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2+S 2+S 1+S 2+S 2+S 2+S 1 1 1+S 1 2 2 2 2 2 2 2 2 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2 2 2 2 2 2 2 2 2
Group
Mnemonic SKE
Operand
Operation
Addressing area
Skip condition reg = n4
Comparison
reg, #n4 @HL, #n4 A, @HL XA, @HL A, reg XA, rp'
Skip if reg = n4 Skip if (HL) = n4 Skip if A = (HL) Skip if XA = (HL) Skip if A = reg Skip if XA = rp' CY 1 CY 0 Skip if CY = 1 CY CY (mem.bit) 1 (fmem.bit) 1 (pmem7-2 + L3-2.bit(L1-0)) 1 (H + mem3-0.bit) 1 (mem.bit) 0 (fmem.bit) 0 (pmem7-2 + L3-2.bit(L1-0)) 0 (H + mem3-0.bit) 0 Skip if (mem.bit) = 1 Skip if (fmem.bit) = 1 Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 Skip if (H + mem3-0.bit) = 1 Skip if (mem.bit) = 0 Skip if (fmem.bit) = 0 Skip if (pmem7-2 + L3-2.bit(L1-0)) = 0 Skip if (H + mem3-0.bit) = 0 Skip if (fmem.bit) = 1 and clear Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 and clear Skip if (H + mem3-0.bit) = 1 and clear CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY *3 *4 *5 *1 *3 *4 *5 *1 *3 *4 *5 *1 *3 *4 *5 *1 *4 *5 *1 *4 *5 *1 *4 *5 *1 *4 *5 *1 *1 *1 *1
(HL) = n4 A = (HL) XA = (HL) A = reg XA = rp'
Carry flag manipulation
SET1 CLR1 SKT NOT1
CY CY CY CY mem.bit fmem.bit pmem. @L @H+mem.bit
CY = 1
Memory bit manipulation
SET1
CLR1
mem.bit fmem.bit pmem. @L @H+mem.bit
SKT
mem.bit fmem.bit pmem. @L @H+mem.bit
(mem.bit) = 1 (fmem.bit) = 1 (pmem.@L) = 1
(@H + mem.bit) = 1
SKF
mem.bit fmem.bit pmem. @L @H+mem.bit
(mem.bit) = 0 (fmem.bit) = 0 (pmem.@L) = 0
(@H + mem.bit) = 0
SKTCLR
fmem.bit pmem. @L @H+mem.bit
(fmem.bit) = 1 (pmem.@L) = 1
(@H + mem.bit) = 1
AND1
CY, fmem.bit CY, pmem. @L CY, @H+mem.bit
OR1
CY, fmem.bit CY, pmem. @L CY, @H+mem.bit
XOR1
CY, fmem.bit CY, pmem.@L CY, @H+mem.bit
(fmem.bit) (pmem7-2 + L3-2.bit(L1-0)) (H + mem3-0.bit) (fmem.bit) (pmem7-2 + L3-2.bit(L1-0)) (H + mem3-0.bit) (fmem.bit) (pmem7-2 + L3-2.bit(L1-0)) (H + mem3-0.bit)
45
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle Addressing area *6 Skip condition
Group
Mnemonic BR Note
Operand
Operation * PD750104 PC11-0 addr The assembler selects the most adequate instruction from BR !addr, BRCB !caddr, or BR $addr. * PD750106, 750108 PC12-0 addr The assembler selects the most adequate instruction from BR !addr, BRCB !caddr, or BR $addr.
Branch
addr
addr1
-
-
* PD750104 PC11-0 addr1 The assembler selects the most adequate instruction from instructions below. * * * * BR !addr BRA !addr1 BRCB !caddr BR $addr1
*11
* PD750106, 750108 PC12-0 addr1 The assembler selects the most adequate instruction from instructions below. * * * * !addr 3 3 BR !addr BRA !addr1 BRCB !caddr BR $addr1 *6
* PD750104 PC11-0 addr * PD750106, 750108 PC12-0 addr
$addr
1
2
* PD750104 PC11-0 addr * PD750106, 750108 PC12-0 addr
*7
$addr1
1
2
* PD750104 PC11-0 addr1 * PD750106, 750108 PC12-0 addr1
Note The shaded portion is supported in Mk mode only. The other portions are supported in Mk mode only.
46
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 2 3
Group
Mnemonic BR
Operand
Operation * PD750104 PC11-0 PC11-8 + DE * PD750106, 750108 PC12-0 PC12-8 + DE
Addressing area
Skip condition
Branch
PCDE
PCXA
2
3
* PD750104 PC11-0 PC11-8 + XA * PD750106, 750108 PC12-0 PC12-8 + XA
BCDE
2
3
* PD750104 PC11-0 BCDENote 1
*6
* PD750106, 750108 PC12-0 BCDENote 2 BCXA 2 3 * PD750104 PC11-0 BCXANote 1 *6
* PD750106, 750108 PC12-0 BCXANote 2 BRA Note 3 !addr1 3 3 * PD750104 PC11-0 addr1 * PD750106, 750108 PC12-0 addr1 BRCB !caddr 2 2 * PD750104 PC11-0 caddr11-0 * PD750106, 750108 PC12-0 PC12 + caddr11-0 Subroutine stack control CALLANote 3 !addr1 3 3 * PD750104 (SP - 2) x, x, MBE, RBE (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, 0 PC11-0 addr1, SP SP - 6 * PD750106, 750108 (SP - 2) x, x, MBE, RBE (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, PC12 PC12-0 addr1, SP SP - 6 *11 *8 *11
Notes 1. Set register B to 0. 2. Only the LSB is valid in register B. 3. The shaded portion is supported in Mk mode only. The other portions are supported in Mk mode only.
47
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 3 3 Addressing area *6 Skip condition
Group
Mnemonic CALLNote
Operand
Operation * PD750104 (SP - 3) MBE, RBE, 0, 0 (SP - 4) (SP - 1) (SP - 2) PC11-0 PC11-0 addr, SP SP - 4 * PD750106, 750108 (SP - 3) MBE, RBE, 0, PC12 (SP - 4) (SP - 1) (SP - 2) PC11-0 PC12-0 addr, SP SP - 4
Subroutine stack control
!addr
4
* PD750104 (SP - 2) x, x, MBE, RBE (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, 0 PC11-0 addr, SP SP - 6 * PD750106, 750108 (SP - 2) x, x, MBE, RBE (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, PC12 PC12-0 addr, SP SP - 6
CALLFNote
!faddr
2
2
* PD750104 (SP - 3) MBE, RBE, 0, 0 (SP - 4) (SP - 1) (SP - 2) PC11-0 PC11-0 0 + faddr, SP SP - 4 * PD750106, 750108 (SP - 3) MBE, RBE, 0, PC12 (SP - 4) (SP - 1) (SP - 2) PC11-0 PC12-0 00 + faddr, SP SP - 4
*9
3
* PD750104 (SP - 2) x, x, MBE, RBE (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, 0 PC11-0 0 + faddr, SP SP - 6 * PD750106, 750108 (SP - 2) x, x, MBE, RBE (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, PC12 PC12-0 00 + faddr, SP SP - 6
Note The shaded portion is supported in Mk mode only. The other portions are supported in Mk mode only.
48
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 1 3
Group
Mnemonic RETNote
Operand
Operation * PD750104 PC11-0 (SP) (SP + 3) (SP + 2) MBE, RBE, 0, 0 (SP + 1), SP SP + 4 * PD750106, 750108 PC11-0 (SP) (SP + 3) (SP + 2) MBE, RBE, 0, PC12 (SP + 1) SP SP + 4
Addressing area
Skip condition
Subroutine stack control
3
* PD750104 x, x, MBE, RBE (SP + 4) 0, 0, 0, 0 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) SP SP + 6 * PD750106, 750108 x, x, MBE, RBE (SP + 4) MBE, 0, 0, PC12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) SP SP + 6
RETS Note
1
3+S
* PD750104 MBE, RBE, 0, 0 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) SP SP + 4 then skip unconditionally * PD750106, 750108 MBE, RBE, 0 PC12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) SP SP + 4 then skip unconditionally
Uncondition
3+S
* PD750104 0, 0, 0, 0 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) x, x, MBE, RBE (SP + 4) SP SP + 6 then skip unconditionally * PD750106, 750108 0, 0, 0, PC12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) x, x, MBE, RBE (SP + 4) SP SP + 4 then skip unconditionally
Note The shaded portion is supported in Mk mode only. The other portions are supported in Mk mode only.
49
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 1 3 Addressing area Skip condition
Group
Mnemonic RETINote 1
Operand
Operation * PD750104 MBE, RBE, 0, 0 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) PSW (SP + 4) (SP + 5), SP SP + 6 * PD750106, 750108 MBE, RBE, 0, PC12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) PSW (SP + 4) (SP + 5), SP SP + 6 * PD750104 0, 0, 0, 0 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) PSW (SP + 4) (SP + 5), SP SP + 6 * PD750106, 750108 0, 0, 0, PC12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) PSW (SP + 4) (SP + 5), SP SP + 6
Subroutine stack control
PUSH
rp BS
1 2
1 2
(SP - 1)(SP - 2) rp, SP SP - 2 (SP - 1) MBS, (SP - 2) RBS, SP SP - 2 rp (SP + 1)(SP), SP SP + 2 MBS (SP + 1), RBS (SP), SP SP + 2 IME (IPS.3) 1 IExxx 1 IME (IPS.3) 0 IExxx 0 A PORTn XA PORTn+1,PORTn PORTn A PORTn+1,PORTn XA Set HALT Mode Set STOP Mode No Operation (n = 0 - 8) (n = 4, 6) (n = 2 - 8) (n = 4, 6)
POP
rp BS
1 2
1 2
Interrupt control
EI IExxx DI IExxx
2 2 2 2 2 2 2 2 2 2 1
2 2 2 2 2 2 2 2 2 2 1
Input/ output
INNote 2
A, PORTn XA, PORTn
OUTNote 2
PORTn, A PORTn, XA
CPU control
HALT STOP NOP
(PCC.2 1) (PCC.3 1)
Notes 1. The shaded portion is supported in Mk mode only. The other portions are supported in Mk mode only. 2. When executing the IN/OUT instruction, MBE must be set to 0 or MBE and MBS must be set to 1 and 15, respectively.
50
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 2 2 1 2 2 3
Group
Mnemonic SEL
Operand
Operation RBS n (n = 0 - 3) MBS n (n = 0, 1, 15) * PD750104 When the TBR instruction is used
Addressing area
Skip condition
Special
RBn MBn
GETINotes 1, 2
taddr
*10
........................................................
When the TCALL instruction is used (SP - 4) (SP - 1) (SP - 2) PC11-0 (SP - 3) MBE, RBE, 0, 0 PC11-0 (taddr)3-0 + (taddr + 1)
PC11-0 (taddr)3-0 + (taddr + 1)
........................................................
When an instruction other than the TBR and TCALL instructions is used Execution of (taddr)(taddr + 1) instruction * PD750106, 750108 When the TBR instruction is used
SP SP - 4
.....................
Depends on the referenced instruction.
........................................................
When the TCALL instruction is used (SP - 4) (SP - 1) (SP - 2) PC11-0 (SP - 3) MBE, RBE, 0, PC12 PC12-0 (taddr)4-0 + (taddr + 1)
PC12-0 (taddr)4-0 + (taddr + 1)
........................................................
When an instruction other than the TBR and TCALL instructions is used Execution of (taddr)(taddr + 1) instruction 3 * PD750104 When the TBR instruction is used *10
SP SP - 4
.....................
Depends on the referenced instruction.
.......................................................................
4 When the TCALL instruction is used (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, 0 (SP - 2) x, x, MBE, RBE PC11-0 (taddr)3-0 + (taddr + 1)
PC11-0 (taddr)3-0 + (taddr + 1)
.......................................................................
3 When an instruction other than the TBR and TCALL instructions is used Execution of (taddr)(taddr + 1) instruction
SP SP - 6
.....................
Depends on the referenced instruction.
Notes 1. The shaded portion is supported in Mk mode only. The other portions are supported in Mk mode only. 2. TBR and TCALL instructions are assembler pseudo instructions to define tables used for GETI instructions.
51
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MachinBytes ing cycle 1 3 Addressing area *10 Skip condition
Group
Mnemonic GETINotes 1, 2
Operand
Operation * PD750106, 750108 When the TBR instruction is used
Special
taddr
.......................................................................
4 When the TCALL instruction is used (SP - 6) (SP - 3) (SP - 4) PC11-0 (SP - 5) 0, 0, 0, PC12 (SP - 2) x, x, MBE, RBE PC12-0 (taddr)4-0 + (taddr + 1)
PC12-0 (taddr)4-0 + (taddr + 1)
.......................................................................
3 When an instruction other than the TBR and TCALL instructions is used Execution of (taddr)(taddr + 1) instruction
SP SP - 6
.....................
Depends on the referenced instruction.
Notes 1. The shaded portion is supported in Mk mode only. 2. TBR and TCALL instructions are assembler pseudo instructions to define tables used for GETI instructions.
52
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
12. ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS (TA = 25 C)
Parameter Supply voltage Input voltage Symbol VDD VI1 VI2 Other than ports 4 and 5 Ports 4 and 5 Output voltage High-level output current VO IOH Each pin Total of all pins Low-level output current IOL Each pin Total of all pins Operating ambient temperature Storage temperature TA Tstg With a built-in pull-up resistor With N-ch open drain Conditions Rated value -0.3 to +7.0 -0.3 to VDD + 0.3 -0.3 to VDD + 0.3 -0.3 to +14.0 -0.3 to VDD + 0.3 -10 -30 30 220 -40 to +85 -65 to +150 Unit V V V V V mA mA mA mA C C
Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values. CAPACITANCE (TA = 25 C, VDD = 0 V)
Parameter Input capacitance Output capacitance I/O capacitance Symbol CIN COUT CIO Conditions f = 1 MHz 0 V for pins other than pins to be measured MIN. TYP. MAX. 15 15 15 Unit pF pF pF
53
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
CHARACTERISTICS OF THE MAIN SYSTEM CLOCK OSCILLATOR (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Resonator RC oscillator Recommended constant CL1 CL2 Parameter Oscillator frequency (fCC) Note Conditions MIN. 0.4 TYP. MAX. 2.0 Unit MHz
Note The oscillator frequency indicates only the oscillator characteristics. See AC characteristics for the instruction execution time and oscillator frequency characteristics. Caution When the main system clock oscillator is used, conform to the following guidelines when wiring at the portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity. * The wiring must be as short as possible. * Other signal lines must not run in these areas. * Any line carrying a high fluctuating current must be kept away as far as possible. * The grounding point of the capacitor of the oscillator must have the same potential as that of VSS. * It must not be grounded to ground patterns carrying a large current. * No signal must be taken from the oscillator.
54
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
CHARACTERISTICS OF THE SUBSYSTEM CLOCK OSCILLATOR (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Resonator Crystal XT1 XT2 R C3 External clock C4 Oscillation settling time Note 2 VDD = 4.5 to 5.5 V 1.0 2 10 XT1 XT2 XT1 input frequency (fXT) Note 1 32 100 s s kHz Recommended constant Parameter Oscillator frequency (fXT) Note 1 Conditions MIN. 32 TYP. 32.768 MAX. 35 Unit kHz
XT1 input high/low level width (tXTH, tXTL)
5
15
s
Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time. 2. The oscillation settling time means the time required for the oscillation to settle after VDD is applied. Caution When the subsystem clock oscillator is used, conform to the following guidelines when wiring at the portions of surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity. * The wiring must be as short as possible. * Other signal lines must not run in these areas. * Any line carrying a high fluctuating current must be kept away as far as possible. * The grounding point of the capacitor of the oscillator must have the same potential as that of VSS * It must not be grounded to ground patterns carrying a large current. * No signal must be taken from the oscillator. When the subsystem clock is used, pay special attention to its wiring; the subsystem clock oscillator has low amplification to minimize current consumption and is more likely to malfunction due to noise than the main system clock oscillator.
55
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
DC CHARACTERISTICS (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Parameter Low-level output current High-level input voltage Symbol IOL Each pin Total of all pins VIH1 Ports 2, 3, and 8 2.7 V VDD 5.5 V 1.8 V VDD < 2.7 V VIH2 Ports 0, 1, 6, and 7 and RESET 2.7 V VDD 5.5 V 1.8 V VDD < 2.7 V VIH3 Ports 4 and With a Built-in pull-up 5 resistor 2.7 V VDD 5.5 V 1.8 V VDD < 2.7 V 0.7VDD 0.9VDD 0.8VDD 0.9VDD 0.7VDD 0.9VDD 0.7VDD 0.9VDD VDD - 0.1 2.7 V VDD 5.5 V 1.8 V VDD < 2.7 V VIL2 Ports 0, 1, 6, and 7 and RESET 2.7 V VDD 5.5 V 1.8 V VDD < 2.7 V VIL3 High-level output voltage Low-level output voltage VOH VOL1 XT1 SCK, SO, and ports 2, 3, and 6 to 8 IOH = -1.0 mA SCK, SO, and ports 2 to 8 SB0, SB1 VIN = VDD IOL = 15 mA, VDD = 5.0 V 10% IOL = 1.6 mA N-ch open drain Other than XT1 XT1 VIN = 13 V VIN = 0 V Ports 4 and 5 (With N-ch open drain) Other than XT1 and ports 4 and 5 XT1 Ports 4 and 5 (With N-ch open drain) At other than input instruction execution Ports 4 and 5 (With N-ch open drain) When the input instruction is executed High-level output leakage current ILOH1 VOUT = VDD Pull-up resistor 1 k 0 0 0 0 0 VDD - 0.5 0.2 2.0 0.4 0.2VDD 3 20 20 -3 -20 -3 Conditions MIN. TYP. MAX. 15 150 VDD VDD VDD VDD VDD VDD 13 13 VDD 0.3VDD 0.1VDD 0.2VDD 0.1VDD 0.1 Unit mA mA V V V V V V V V V V V V V V V V V V
With N-ch open drain 2.7 V VDD 5.5 V 1.8 V VDD < 2.7 V VIH4 Low-level input voltage VIL1 XT1 Ports 2 to 5, and 8
VOL2 High-level input leakage current ILIH1 ILIH2 ILIH3 Low-level input leakage current ILIL1 ILIL2 ILIL3
A A A A A A A A A A
-30 VDD = 5.0 V VDD = 3.0 V -10 -3 -27 -8 3
SCK, SO/SB0, SB1, and ports 2, 3, and 6 to 8 Ports 4 and 5 (With a built-in pull-up resistor)
ILOH2 Low-level output leakage current Built-in pull-up resistor ILOL
VOUT = 13 V Ports 4 and 5 (With N-ch open drain) VOUT = 0 V
20 -3
A A
k k
RL1 RL2
VIN = 0 V
Ports 0 to 3 and 6 to 8 (except P00 pin) Ports 4 and 5 (mask option)
50 15
100 30
200 60
56
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
DC CHARACTERISTICS (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Parameter Power supply current Note 1 Symbol IDD1 1.0 MHzNote 2 RC oscillation R = 22 k, C = 22 pF IDD3 32.768 kHz Note 5 crystal oscillation Low-voltage modeNote 6 VDD = 5.0 V Conditions 10%Note 3 MIN. TYP. 0.65 180 370 170 11.0 5.5 11.0 8.0 8.0 5.0 5.0 MAX. 1.6 360 920 340 40.0 18.0 18.0 24.0 14.0 30.0 12.0 Unit mA
VDD = 3.0 V 10%Note 4 HALT mode VDD = 5.0 V 10% VDD = 3.0 V 10% VDD = 3.0 V 10% VDD = 2.0 V 10% VDD = 3.0 V, TA = 25 C Low-currentdrain modeNote 7 VDD = 3.0 V 10% VDD = 3.0 V, TA = 25 C Low-volVDD = 3.0 V 10%
A A A A A A A A A A
IDD2
IDD4
HALT mode
tage VDD = 3.0 V, modeNote 6 TA = -40 to +50 C VDD = 2.0 V 10% VDD = 3.0 V, TA = 25 C Low-curVDD = 3.0 V 10% rent-drain Note 7 mode VDD = 3.0 V, TA = -40 to +50 C VDD = 3.0 V, TA = 25 C IDD5 XT1 = 0 VNote 8 STOP mode VDD = 5.0 V 10% VDD = 3.0 V 10% TA = 25 C
2.5 5.0 4.0 4.0
10.0 10.0 15.0 8.0
A A A A
4.0 0.05 0.02 0.02
7.0 5.0 2.5 0.2
A A A A
Notes 1. This current excludes the current which flows through the built-in pull-up resistors. 2. This value applies also when the subsystem clock oscillates. 3. Value when the processor clock control register (PCC) is set to 0011 and the PD750108 is operated in the high-speed mode. 4. Value when the PCC is set to 0000 and the PD750108 is operated in the low-speed mode. 5. This value applies when the system clock control register (SCC) is set to 1001 to stop the main system clock pulse and to start the subsystem clock pulse. 6. Mode when the sub-oscillator control register (SOS) is set to 0000. 7. Mode when the SOS is set to 0010. 8. This value applies when the SOS is set to 00x1 and the sub-oscillator feedback resistor is not used (x = don't care).
57
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
AC CHARACTERISTICS (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Parameter Symbol Conditions Operated by main system clock pulse Operated by subsystem clock pulse MIN. 2.0 114 122 TYP. MAX. 128 125 Unit
tCY CPU clock cycle time Note 1 (minimum instruction execution time = 1 machine cycle) TI0 input frequency fTI
s s
MHz kHz
VDD = 2.7 to 5.5 V
0 0
1 275
TI0 input high/low level width Interrupt input high/low level width
tTIH, tTIL tINTH, tINTL
VDD = 2.7 to 5.5 V
0.48 1.8
s s s s s s s
1.00 1.00 1.30 1.30 MHz MHz
INT0
IM02 = 0 IM02 = 1
Note 2
10 10 10 10
INT1, INT2, and INT4 KR0 to KR7 RESET low level width RC oscillator frequency tRSL fCC R = 22 k, C = 22 pF VDD = 2.7 to 5.5 V VDD = 2.7 to 5.5 V
0.90 0.55
Notes 1. When the main system clock is used, the cycle time of the CPU clock () (minimum instruction execution time) depends on the time constants of connected resistors (R) and capacitors (C) and the processor clock control register (PCC). When the subsystem clock is used, the cycle time of the CPU clock () (minimum instruction execution time) depends on the frequency of the connected resonator (and external clock), the system clock control register (SCC), and the processor clock control register (PCC). The figure on the right side shows the cycle time tCY characteristics for the supply voltage VDD during main system clock operation. 2. This value becomes 2tCY or 128/fCC according to the setting of the interrupt mode register (IM0).
1 Cycle time tCY [s] 4 3 128
tCY vs. VDD
(Main system clock in operation)
6 5 Operation guaranteed range
2
0.5
0
1
1.8 2
3
4
5 5.5 6
Power supply voltage VDD [V]
58
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
SERIAL TRANSFER OPERATION Two-wire and three-wire serial I/O modes (SCK: Internal clock output): (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Parameter SCK cycle time Symbol tKCY1 Conditions VDD = 2.7 to 5.5 V MIN. 1,300 3,800 SCK high/low level width SI Note 1 setup time (referred to SCK) SI Note 1 hold time (referred to SCK) Delay time from SCK to SO Note 1 output tKL1, tKH1 tSIK1 VDD = 2.7 to 5.5 V tKCY1/2 - 50 tKCY1/2 - 150 VDD = 2.7 to 5.5 V 150 500 tKSI1 VDD = 2.7 to 5.5 V 400 600 tKSO1 RL = 1 k Note 2 CL = 100 pF VDD = 2.7 to 5.5 V 0 0 250 1,000 TYP. MAX. Unit ns ns ns ns ns ns ns ns ns ns
Notes 1. In two-wire serial I/O mode, SO should be read as SB0 or SB1. 2. RL is the resistance of the SO output line load, while CL is the capacitance. Two-wire and three-wire serial I/O modes (SCK: External clock input): (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Parameter SCK cycle time Symbol tKCY2 Conditions VDD = 2.7 to 5.5 V MIN. 800 3,200 SCK high/low level width SI Note 1 setup time (referred to SCK) SI Note 1 hold time (referred to SCK) tKL2, tKH2 tSIK2 VDD = 2.7 to 5.5 V 400 1,600 VDD = 2.7 to 5.5 V 100 150 tKSI2 VDD = 2.7 to 5.5 V 400 600 tKSO2 RL = 1 CL = 100 pF k Note 2 VDD = 2.7 to 5.5 V 0 0 300 1,000 TYP. MAX. Unit ns ns ns ns ns ns ns ns ns ns
Delay time from SCK to SO Note 1 output
Notes 1. In two-wire serial I/O mode, SO should be read as SB0 or SB1. 2. RL is the resistance of the SO output line load, while CL is the capacitance.
59
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
SBI mode (SCK: Internal clock output (master)): (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Parameter SCK cycle time Symbol tKCY3 Conditions VDD = 2.7 to 5.5 V MIN. 1,300 3,800 SCK high/low level width SB0/SB1 setup time (referred to SCK) SB0/SB1 hold time (referred to SCK) Delay time from SCK to SB0/SB1 output tKL3, tKH3 tSIK3 VDD = 2.7 to 5.5 V tKCY3/2 - 50 tKCY3/2 - 150 VDD = 2.7 to 5.5 V 150 500 tKSI3 tKCY3/2 TYP. MAX. Unit ns ns ns ns ns ns ns
tKSO3
RL = 1 k Note CL = 100 pF
VDD = 2.7 to 5.5 V
0 0 tKCY3 tKCY3 tKCY3 tKCY3
250 1,000
ns ns ns ns ns ns
From SCK to SB0/SB1 tKSB From SB0/SB1 to SCK tSBK SB0/SB1 low level width tSBL SB0/SB1 high level width tSBH
Note RL is the resistance of the SB0/SB1 output line load, while CL is the capacitance. SBI mode (SCK: External clock input (slave)): (TA = -40 to +85 C, VDD = 1.8 to 5.5 V)
Parameter SCK cycle time Symbol tKCY4 Conditions VDD = 2.7 to 5.5 V MIN. 800 3,200 SCK high/low level width SB0/SB1 setup time (referred to SCK) SB0/SB1 hold time (referred to SCK) Delay time from SCK to SB0/SB1 output tKL4, tKH4 tSIK4 VDD = 2.7 to 5.5 V 400 1,600 VDD = 2.7 to 5.5 V 100 150 tKSI4 tKCY4/2 TYP. MAX. Unit ns ns ns ns ns ns ns
tKSO4
RL = 1 k Note CL = 100 pF
VDD = 2.7 to 5.5 V
0 0 tKCY4 tKCY4 tKCY4 tKCY4
300 1,000
ns ns ns ns ns ns
From SCK to SB0/SB1 tKSB From SB0/SB1 to SCK tSBK SB0/SB1 low level width tSBL SB0/SB1 high level width tSBH
Note RL is the resistance of the SB0/SB1 output line load, while CL is the capacitance.
60
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
AC timing measurement points (excluding XT1 input)
VIH (MIN.) VIL (MAX.) VIH (MIN.) VIL (MAX.)
VOH (MIN.) VOL (MAX.)
VOH (MIN.) VOL (MAX.)
Clock timing
1/fXT tXTL tXTH
VDD - 0.1 V XT1 input 0.1 V
TI0 timing
1/fTI tTIL tTIH
TI0
61
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Serial transfer timing Three-wire serial I/O mode:
tKCY1 tKCY2 tKL1 tKL2 tKH1 tKH2
SCK
tSIK1 tSIK2
tKSI1 tKSI2
SI tKSO1 tKSO2
Input data
SO
Output data
Two-wire serial I/O mode:
tKCY1 tKCY2 tKL1 tKL2 tKH1 tKH2
SCK
tSIK1 tSIK2
tKSI1 tKSI2
SB0 and SB1
tKSO1 tKSO2
62
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Serial transfer timing Bus release signal transfer:
tKCY3 tKCY4 tKL3 tKL4 SCK tSIK3 tSIK4 tKSI3 tKSI4 tKH3 tKH4
tKSB
tSBL
tSBH
tSBK
SB0 and SB1
tKSO3 tKSO4
Command signal transfer:
tKCY3 tKCY4 tKL3 tKL4 SCK tSIK3 tSIK4 tKSI3 tKSI4 tKH3 tKH4
tKSB
tSBK
SB0 and SB1
tKSO3 tKSO4
Interrupt input timing
tINTL tINTH
INT0, INT1, INT2, and INT4 KR0 - KR7
RESET input timing
tRSL
RESET
63
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
DATA HOLD CHARACTERISTICS BY LOW SUPPLY VOLTAGE IN DATA MEMORY STOP MODE (TA = -40 to +85 C)
Parameter Release signal setting time Oscillation settling time Note 1 Symbol tSREL tWAIT Release by RESET Release by interrupt request Conditions MIN. 0 56/fCC
Note 2
TYP.
MAX.
Unit
s s s
Notes 1. CPU operation stop time for preventing unstable operation at the beginning of oscillation. 2. Select either 512/fCC or no wait with the mask option. Data hold timing (STOP mode release by RESET)
Internal reset operation HALT mode STOP mode Data hold mode Operation mode
VDD tSREL STOP instruction execution
RESET
tWAIT
Data hold timing (standby release signal: STOP mode release by interrupt signal)
HALT mode STOP mode Data hold mode Operation mode
VDD tSREL STOP instruction execution Standby release signal (Interrupt request)
tWAIT
64
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
13. CHARACTERISTIC CURVE (REFERENCE VALUES)
IDD vs. VDD (When the main system clock is operating at 1.0 MHz with an RC oscillation)
(TA = 25 C)
10
5.0
1.0
0.5
PCC = 0011 PCC = 0010 PCC = 0001 PCC = 0000 Main system clock HALT mode + 32 kHz oscillation
Supply current IDD (mA)
0.1
0.05
Subsystem clock operating mode (SOS.1 = 0) Subsystem clock HALT mode (SOS.1 = 0) and main system clock STOP mode + 32 kHz oscillation (SOS.1 =0) Subsystem clock HALT mode (SOS.1 = 1) and main system clock STOP mode + 32 kHz oscillation (SOS.1 =1)
0.01
0.005
CL1
CL2
XT1
XT2 220 k 33 pF
RC oscillation 22 k 22 pF
Crystal 32.768 kHz 33 pF
0.001
0
1
2
3
4 Supply voltage VDD (V)
5
6
7
8
65
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
14. EXAMPLES OF RC OSCILLATOR FREQUENCY CHARACTERISTICS (REFERENCE VALUES)
fCC vs. VDD (RC oscillation , R = 22 k, C = 22 pF)
2.0 Main system clock frequency fCC (MHz) CL1 CL2 22 k 22 pF
(TA = -40 C)
1.0 Sample A
Sample B Sample C
0.5
0
1
2
3
5 4 Supply voltage VDD (V)
6
7
8
2.0
Main system clock frequency fCC (MHz)
(TA = 25 C)
CL1 CL2 22 k 22 pF
1.0
Sample A Sample B Sample C
0.5
0
1
2
3
5 4 Supply voltage VDD (V)
6
7
8
2.0 Main system clock frequency fCC (MHz) CL1 CL2 22 k 22 pF
(TA = 85 C)
1.0
Sample A Sample B Sample C
0.5
0
1
2
3
5 4 Supply voltage VDD (V)
6
7
8
66
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
fCC vs. TA (RC oscillation, R = 22 k, C = 22 pF)
2.0 Main system clock frequency fCC (MHz) CL1 CL2 22 k 22 pF
(Sample A)
1.0
VDD = 5.0 V VDD = 3.0 V VDD = 2.2 V VDD = 1.8 V
0.5 -60
-40
-20
0 +20 +40 Operating ambient temperature TA (C)
+60
+80
+100
2.0
Main system clock frequency fCC (MHz)
(Sample B)
CL1 CL2 22 k 22 pF
1.0
VDD = 5.0 V VDD = 3.0 V VDD = 2.2 V VDD = 1.8 V
0.5 -60
-40
-20
+40 0 +20 Operating ambient temperature TA (C)
+60
+80
+100
2.0 Main system clock frequency fCC (MHz) CL1 CL2 22 k 22 pF
(Sample C)
1.0
VDD = 5.0 V VDD = 3.0 V VDD = 2.2 V VDD = 1.8 V
0.5 -60
-40
-20
0 +20 +40 Operating ambient temperature TA (C)
+60
+80
+100
67
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
15. PACKAGE DRAWINGS
44 PIN PLASTIC QFP ( 10)
A B
33 34
23 22
detail of lead end
C
D
S R Q
44 1
12 11
F J G H I
M
K P N
NOTE Each lead centerline is located within 0.16 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
M
L
ITEM A B C D F G H I J K L M N P Q R S MILLIMETERS 13.20.2 10.00.2 10.00.2 13.20.2 1.0 1.0 0.37 +0.08 -0.07 0.16 0.8 (T.P.) 1.60.2 0.80.2 0.17 +0.06 -0.05 0.10 2.7 0.1250.075 3 +7 -3 3.0 MAX. INCHES 0.520 +0.008 -0.009 0.394 +0.008 -0.009 0.394 +0.008 -0.009 0.520 +0.008 -0.009 0.039 0.039 0.015 +0.003 -0.004 0.007 0.031 (T.P.) 0.0630.008 0.031 +0.009 -0.008 0.007 +0.002 -0.003 0.004 0.106 0.0050.003 3 +7 -3 0.119 MAX. S44GB-80-3BS
68
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
42PIN PLASTIC SHRINK DIP (600 mil)
42 22
1 A
21
K L
I G J H
F C D N
M
B M
R
NOTES 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition. 2) Item "K" to center of leads when formed parallel.
ITEM A B C D F G H I J K L M N R
MILLIMETERS 39.13 MAX. 1.78 MAX. 1.778 (T.P.) 0.500.10 0.9 MIN. 3.20.3 0.51 MIN. 4.31 MAX. 5.08 MAX. 15.24 (T.P.) 13.2 0.25 +0.10 -0.05 0.17 0~15
INCHES 1.541 MAX. 0.070 MAX. 0.070 (T.P.) 0.020 +0.004 -0.005 0.035 MIN. 0.1260.012 0.020 MIN. 0.170 MAX. 0.200 MAX. 0.600 (T.P.) 0.520 0.010 +0.004 -0.003 0.007 0~15 P42C-70-600A-1
69
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
16. RECOMMENDED SOLDERING CONDITIONS
The PD750104, PD750106, and PD750108 should be soldered and mounted under the conditions recommended in the table below. For detail of recommended soldering conditions, refer to the information document SMD Surface Mount Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact our sales personnel. Table 16-1. Surface Mounting Type Soldering Conditions
PD750104GB-xxx-3BS-MTX PD750106GB-xxx-3BS-MTX PD750108GB-xxx-3BS-MTX
: 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) : 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) : 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch)
PD750104GB(A)-xxx-3BS-MTX : 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) PD750106GB(A)-xxx-3BS-MTX : 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) PD750108GB(A)-xxx-3BS-MTX : 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch)
Soldering method Infrared reflow
Soldering conditions Package peak temperature: 235 C Duration: 30 seconds max. (at 210 C or above) Maximum allowable number of reflow processes: 3 Package peak temperature: 215 C Duration: 40 seconds max. (at 200 C or above) Maximum allowable number of reflow processes: 3 Solder bath temperature: 260 C max. Duration: 10 seconds max. Number of times: 1 Preliminary heat temperature: 120 C max. (package surface temperature) Terminal temperature: 300 C max. Duration: 3 seconds max. (per device side)
Symbol IR35-00-3
VPS
VP15-00-3
Wave soldering
WS60-00-1
Partial heating method
-
Caution Use of more than one soldering method should be avoided (except for partial heating method). Table 16-2. Insertion Type Soldering Conditions
PD750104CU-xxx PD750106CU-xxx PD750108CU-xxx
: 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) : 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) : 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)
PD750104CU(A)-xxx : 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) PD750106CU(A)-xxx : 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) PD750108CU(A)-xxx : 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)
Soldering method Wave soldering (terminal only) Partial heating method Soldering conditions Solder bath temperature: 260 C max., Duration: 10 seconds max. Terminal temperature: 300 C max., Duration: 3 seconds max. (for each pin)
Caution Apply wave soldering to terminals only. See to it that the jet solder does not contact with the chip directly.
70
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
APPENDIX A FUNCTIONS OF THE PD750008, PD750108, AND PD75P0116
(1/2)
Item Program memory
PD750008
Masked ROM 0000H - 1FFFH (8,192 x 8 bits) 000H - 1FFH (512 x 4 bits) 75XL CPU
PD750108
PD75P0116
One-time PROM 0000H - 3FFFH (16,384 x 8 bits)
Data memory
CPU General-purpose register Main system clock oscillator Time required for start after reset
(4 bits x 8 or 8 bits x 4) x 4 banks Crystal/ceramic oscillator 2 17/fX, 2 15/fX (selected using a mask option) 2 20/fX, 2 17/fX, 2 15/fX, 2 13/fX (selected according to BTM setting) Crystal oscillator * 0.95, 1.91, 3.81, or s (when operating fX =4.19 MHz) * 0.67, 1.33, 2.67, or s (when operating fX = 6.0 MHz) 15.3 * 4, 8, 16, or 64 s (when operating at fCC = 1.0 MHz) at * 2, 4, 8, or 32 s (when operating at fCC = 2.0 MHz) 10.7 at RC oscillator (with external resistor and capacitor) Fixed to 56/fCC
Wait time applied when STOP mode is released by an interrupt
2 9/fCC or no wait (selected using a mask option)
Fixed to 29 /fCC
Subsystem clock oscillator When selecting the main system clock
Instruction execution time
When selecting the subsystem clock CMOS input
122 s (when operating at 32.768 kHz) 8 (Built-in pull-up resistors that can be connected by software: 7) 18 (Built-in pull-up resistors that can be connected by software) 8 (Pull-up resistors that can be incorporated by mask option) Withstand voltage of 13 V 34 4 channels * 8-bit timer counter: 1 * 8-bit timer/event counter: 1 * Basic interval timer/ watchdog timer: 1 * Clock timer: 1 4 channels * 8-bit timer counter (clock timer output function provided): 1 * 8-bit timer/event counter: 1 * Basic interval timer/watchdog timer: 1 * Clock timer: 1 8 (No mask option) Withstand voltage of 13 V
I/O port Timer
CMOS I/O N-ch open-drain I/O
Total
71
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
(2/2)
Item Serial interface
PD750008
PD750108
PD75P0116
3 modes supported * Three-wire serial I/O mode: First transferred bit switchable between LSB and MSB * Two-wire serial I/O mode * SBI mode * , 524, 262, or 65.5 kHz * , 125, 62.5, or 15.6 kHz (when the main system (when the main system clock operates at 1.0 MHz) clock operates at 4.19 MHz) * , 750, 375, or 93.8 kHz * , 250, 125, or 31.3 kHz (when the main system (when the main system clock operates at 2.0 MHz) clock operates at 6.0 MHz) * 2, 4, or 32 kHz (when the * 2, 4, or 32 kHz (when the subsystem clock main system clock operates at 32.768 kHz) operates at 4.19 MHz * 0.488, 0.977, or 7.813 kHz (when the main or the subsystem clock system clock operates at 1.0 MHz) operates at 32.768 kHz) * 0.977, 1.953, or 15.625 kHz (when the main * 2.93, 5.86, or 46.9 kHz system clock operates at 2.0 MHz) (when the main system clock operates at 6.0 MHz) External: 3, internal: 4 External: 1, internal: 1 VDD = 2.2 to 5.5 V T A = -40 to +85 C * 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) * 44-pin plastic QFP (10 x 10 mm, 0.8-mm pitch) VDD = 1.8 to 5.5 V
Clock output (PCL)
Buzzer output (BUZ)
Vectored interrupt Test input Supply voltage Operating ambient temperature Package
72
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
APPENDIX B DEVELOPMENT TOOLS
The following development tools are provided for the development of a system which employs the PD750108. In the 75XL series, use the common relocatable assembler together with a device file of each model. Language processors
RA75X relocatable assembler Host machine OS PC-9800 series MS-DOSTM Ver. 3.30 to Ver. 6.2 Note Distribution media 3.5-inch 2HD Part number
S5A13RA75X S5A10RA75X S7B13RA75X S7B10RA75X
5.25-inch 2HD
IBM PC/AT TM and See "OS for IBM PC." 3.5-inch 2HC compatibles 5.25-inch 2HC
Device file
Host machine OS PC-9800 series MS-DOS Ver. 3.30 to Ver. 6.2Note Distribution media 3.5-inch 2HD 5.25-inch 2HD
Part number
S5A13DF750008 S5A10DF750008 S7B13DF750008 S7B10DF750008
IBM PC/AT and compatibles
See "OS for IBM PC." 3.5-inch 2HC 5.25-inch 2HC
Note These software products cannot use the task swap function, which is available in MS-DOS Ver. 5.00 or later. Remark The operations of the assembler and device file are guaranteed only on the above host machines and OSs.
73
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
PROM programming tools
Hardware PG-1500 The PG-1500 PROM programmer is used together with an accessory board and optional program adapter. It allows the user to program a single chip microcontroller containing PROM from a standalone terminal or a host machine. The PG-1500 can be used to program typical 256K-bit to 4M-bit PROMs. The PA-75P008CU is a PROM programmer adapter provided for the PD75P0116CU/GB. It is used in conjunction with the PG-1500. This program enables the host machine to control the PG-1500 through the serial and parallel interfaces. Host machine OS PC-9800 series MS-DOS Ver. 3.30 to Ver. 6.2Note See "OS for IBM PC." Distribution media 3.5-inch 2HD Part number
PA-75P008CU
Software
PG-1500 controller
S5A13PG1500 S5A10PG1500 S7B13PG1500 S7B10PG1500
5.25-inch 2HD 3.5-inch 2HD 5.25-inch 2HC
IBM PC/AT and compatibles
Note These software products cannot use the task swap function, which is available in MS-DOS Ver. 5.00 or later. Remark Operation of the PG-1500 controller is guaranteed only on the above host machines and OSs.
74
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Debugging tools The in-circuit emulators (IE-75000-R and IE-75001-R) are provided to debug programs used for the PD750108. The system configuration is shown below.
IE-75000-RNote 1 The IE-75000-R is an in-circuit emulator used to debug hardware and software when developing an application system using the 75X series and 75XL series. Use this emulator together with optional emulation board IE-75300-R-EM and emulation probe EP-75008CU-R or EP-75008GB-R to develop application systems of the PD750108 subseries. For efficient debugging, connect the emulator to the host machine and a PROM programmer. The IE-75000-R contains emulation board IE-75000-R-EM. The board is connected to the IE-75000-R. IE-75001-R The IE-75001-R is an in-circuit emulator used to debug hardware and software when developing an application system using the 75X series and 75XL series. Use this emulator together with optional emulation board IE-75300-R-EM and emulation probe EP-75008CU-R or EP-75008GB-R to develop application systems of the PD750108 subseries. For efficient debugging, connect the emulator to the host machine and a PROM programmer. IE-75300-R-EM The IE-75300-R-EM is an emulation board used to evaluate an application system using the PD750108 subseries. Use this board together with the IE-75000-R or IE-75001-R. EP-75008CU-R The EP-75008CU-R is an emulation probe for the PD750108CU. Connect this emulation probe to the IE-75000-R or IE-75001-R, and the IE-75300-REM. EP-75008GB-R The EP-75008GB-R is an emulation probe for the PD750108GB. Connect this emulation probe to the IE-75000-R or IE-75001-R, and the IE-75300-REM. A 44-pin conversion socket, the EV-9200G-44, supplied with this probe facilitates the connection of the probe to the target system. This program enables the host machine to control the IE-75000-R or IE-75001-R through the RS-232-C and Centronics interface. Host machine Software OS PC-9800 series MS-DOS Ver. 3.30 to Ver. 6.2Note 2 Distribution media 3.5-inch 2HD Part number
Hardware
EV-9200G-44 IE control program
S5A13IE75X S5A10IE75X S7B13IE75X S7B10IE75X
5.25-inch 2HD
IBM PC/AT and compatibles
See "OS for IBM PC." 3.5-inch 2HC 5.25-inch 2HC
Notes 1. Maintenance service only 2. These software products cannot use the task swap function, which is available in MS DOS Ver. 5.00 or later. Remarks 1. Operation of the IE control program is guaranteed only on the above host machines and OSs. 2. The PD750104, PD750106, PD750108, and PD75P0116 are collectively called the PD750108 subseries.
75
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
OS for IBM PC The following IBM PC OSs are supported.
OS PC DOSTM Version Ver. 5.02 to Ver. 6.3 J6.1/V Note to J6.3/VNote MS-DOS Ver. 5.0 to Ver. 6.22 5.0/V Note to 6.2/V Note IBM DOSTM J5.02/V Note
Note Only English version is supported. Caution These software products cannot use the task swap function, which is available in MS-DOS Ver. 5.0 or later.
76
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
APPENDIX C RELATED DOCUMENTS
Some documents are preliminary editions, but they are not so specified in the tables below. Documents related to devices
Document name Document number Japanese English U12301E (This manual)
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A) Data Sheet PD75P0116 Data Sheet PD750108 User's Manual PD750008, 750108 Instruction List
75XL Series Selection Guide
U12301J
U12603J U11330J U11456J U10453J
U12603E U11330E U10453E
Documents related to development tools
Document name Document number Japanese Hardware IE-75000-R/IE-75001-R User's Manual IE-75300-R-EM User's Manual EP-75008CU-R User's Manual EP-75008GB-R User's Manual PG-1500 User's Manual Software RA75X Assembler Package User's Manual PG-1500 Controller User's Manual Operation Language EEU-846 U11354J EEU-699 EEU-698 U11940J EEU-731 EEU-730 EEU-704 EEU-5008 English EEU-1416 U11354E EEU-1317 EEU-1305 EEU-1335 EEU-1346 EEU-1363 EEU-1291 U10540E
PC-9800 series (MS-DOS) base IBM PC series (PC DOS) base
Other related documents
Document name Document number Japanese IC Package Manual Semiconductor Device Mounting Technology Manual Quality Grade on NEC Semiconductor Devices Reliability and Quality Control of NEC Semiconductor Devices Electrostatic Discharge (ESD) Test Semiconductor Device Quality Guarantee Guide Microcontroller-Related Products Guide - by third parties C10943X C10535J C11531J C10983J MEM-539 C11893J U11416J MEI-1202 C10535E C11531E C10983E English
Caution The above related documents are subject to change without notice. Be sure to use the latest edition when you design your system.
77
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.
78
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: * Device availability * Ordering information * Product release schedule * Availability of related technical literature * Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) * Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.
NEC Electronics Inc. (U.S.)
Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580
NEC Electronics Hong Kong Ltd.
Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044
NEC Electronics (Germany) GmbH
Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490
NEC Electronics Hong Kong Ltd. NEC Electronics (France) S.A.
Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411
NEC Electronics (UK) Ltd.
Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290
NEC Electronics (France) S.A.
Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583
NEC Electronics Italiana s.r.1.
Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99
NEC Electronics Taiwan Ltd. NEC Electronics (Germany) GmbH
Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689
J96. 8
79
PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A)
MS-DOS is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product.
M4 96. 5
80


▲Up To Search▲   

 
Price & Availability of UPD750104CU

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X